SNARE VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole and is essential for cell wall organization and root hair growth in arabidopsis
نویسندگان
چکیده
BACKGROUND AND AIMS Root hairs are responsible for water and nutrient uptake from the soil and their growth is responsive to biotic and abiotic changes in their environment. Root hair expansion is a polarized process requiring secretory and endosomal pathways that deliver and recycle plasma membrane and cell wall material to the growing root hair tip. In this paper, the role of VTI13 (AT3G29100), a member of the VTI vesicular soluble NSF attachment receptor (SNARE) gene family in Arabidopsis thaliana, in root hair growth is described. METHODS Genetic analysis and complementation of the vti13 root hair phenotypes of Arabidopsis thaliana were first used to assess the role of VTI13 in root hair growth. Transgenic lines expressing a green fluorescent protein (GFP)-VTI13 construct were used to characterize the intracellular localization of VTI13 in root hairs using confocal microscopy and immunotransmission electron microscopy. KEY RESULTS VTI13 was characterized and genetic analysis used to show that its function is required for root hair growth. Expression of a GFP-VTI13 fusion in the vti13 mutant background was shown to complement the vti13 root hair phenotype. GFP-VTI13 localized to both the vacuole membrane and a mobile endosomal compartment. The function of VTI13 was also required for the localization of SYP41 to the trans-Golgi network. Immunohistochemical analysis indicated that cell wall organization is altered in vti13 root hairs and root epidermal cells. CONCLUSIONS These results show that VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole within root hairs and is essential for the maintenance of cell wall organization and root hair growth in arabidopsis.
منابع مشابه
PART OF A SPECIAL ISSUE ON PLANT CELL WALLS SNARE VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole and is essential for cell wall organization and root hair growth in arabidopsis
Emily R. Larson1,4, David S. Domozych3 and Mary L. Tierney1,2,* Cellular, Molecular and Biomedical Science Program, Department of Plant Biology, University of Vermont, Burlington, VT, USA, Department of Biology, Skidmore College, Saratoga Springs, NY, USA and Institute of Molecular Cell and Systems Biology, University of Glasgow College of Medical, Veterinary & Life Sciences, Glasgow G12 8QQ, U...
متن کاملThe Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells.
Spatial and temporal control of cell wall deposition plays a unique and critical role during growth and development in plants. To characterize membrane trafficking pathways involved in these processes, we have examined the function of a plant Rab GTPase, RabA4b, during polarized expansion in developing root hair cells. Whereas a small fraction of RabA4b cofractionated with Golgi membrane marker...
متن کاملSyntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana.
Root hairs are fast-growing tubular protrusions on root epidermal cells that play important roles in water and nutrient uptake in plants. The tip-focused polarized growth of root hairs is accomplished by the secretion of newly synthesized materials to the tip via the polarized membrane trafficking mechanism. Here, we report the function of two different types of plasma membrane (PM) Qa-SNAREs (...
متن کاملPrimary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis
There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...
متن کاملDistinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis
Membrane trafficking plays pivotal roles in various cellular activities and higher-order functions of eukaryotes and requires tethering factors to mediate contact between transport intermediates and target membranes. Two evolutionarily conserved tethering complexes, homotypic fusion and protein sorting (HOPS) and class C core vacuole/endosome tethering (CORVET), are known to act in endosomal/va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 114 شماره
صفحات -
تاریخ انتشار 2014